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Abstract 

 

The bath temperature is a critical parameter to monitor in aluminium electrolysis cells as it 

significantly influences various phenomena within the cell, including side ledge and bottom freeze 

build-up, which can impact cell life. In today's energy landscape, there is growing pressure to 

modulate power input in potlines. This pressure is driven by the increasing reliance on renewable 

energy sources, which is often cyclical in nature, and from energy providers who wants to offset 

energy consumption peaks. Power modulations have a substantial influence on the bath 

temperature. Accurate and real-time bath temperature estimation hence becomes essential to 

monitor and manage optimal cell productivity conditions. 

 

In this paper, we propose a virtual sensor based on Temporal Convolutional Neural Networks 

(TCN) to estimate bath temperatures in real-time. The proposed solution achieves a Mean 

Absolute Error (MAE) of approximatively 3 degrees Celsius, while never using any measurement 

of bath temperature as input. This level of accuracy is essential for effective power modulation 

and maintaining optimal bath conditions. It also allows for time-efficient scenario evaluation, 

leveraging a better decision making around modulations. 

 

Our work highlights the potential of advanced Machine Learning (ML) techniques to perform 

real-time, accurate estimation of bath temperatures. By demonstrating the feasibility of this 

approach, we aim to pave the way for more modern aluminium electrolysis processes. 
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1. Introduction 

 

Bath temperature is a critical parameter in the aluminium reduction process. Optimal aluminium 

generation occurs within a narrow temperature range between 960 °C and 970 °C. When the bath 

temperature is outside this thermal operational window, the metal productivity is reduced. Other 

than current efficiency, higher temperatures can reduce the lifespan of the cell by melting the side 

ledge around the cell and exposing the cell sides to lining erosion. On the other hand, lower 

temperatures can cause the superfluous bottom freeze that can cause uneven cathodic current 

distribution and uneven wear of the carbon blocks. In the industrial context, the monitoring of the 

temperature is done by manually inserting a thermocouple in the bath. This labor-intensive 

process is typically conducted once per day.  
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The energy landscape is undergoing a rapid transformation. The energy infrastructure is being put 

to the test by growing demands both from private consumers and the industrial sector. The 

increase in development of renewable energy sources such as wind and solar is changing the 

availability of energy at a given time due to their cyclical nature. [1] This phenomenon is 

exacerbated as energy demands vary during the day, corresponding to peak demand in households 

in the morning and evening, and through the year as seasonal temperatures fluctuate (heating 

during cold winter days and climatization during heat waves). Power companies are starting to 

create incentives to encourage the consumers to offset energy consumption during peak demand 

periods. One of these incentives is modulating the prices, lowering it during low-demand periods 

and increasing it during high-demand periods.  

 

In the aluminium industry, power modulations offer a strategic approach to minimize energy-

related expenditures. The goal is to reduce power consumption by decreasing the potroom current 

intensity during peak consumption periods, where prices are at their highest, and take advantage 

of off-peak periods by increasing the intensity. Since aluminium smelting is inherently energy-

intensive, optimizing energy consumption by modulating the potline intensity can result in 

substantial cost savings. However, modulations can have a significant impact on the thermal 

balance of the cells. During lowered intensity, cells will cool, and heat-up during high intensity 

periods, creating substantial changes in bath temperature. Reaching temperatures too far out of 

the thermal operational target can have devastating consequences for cell performance and 

longevity.  

 

To ensure that the bath temperatures of the cells will remain within an acceptable range before 

applying modulations, different algorithms can be used to estimate the behaviour of the bath 

temperatures during modulations. One approach is to create a physical model. A physical model 

is composed of mathematical equations that describe the thermal dynamics of the cells, including 

heat transfer, conduction, and radiation. In the case of the aluminium reduction process, a physical 

model would incorporate factors such as the cell's geometry, material properties, and operating 

conditions to accurately predict temperature fluctuations. The main advantage of this approach is 

that if the model is complex enough (encodes enough physical interactions), it can give estimates 

close to the reality. On the other hand, these algorithms are quite computationally expensive. 

Depending on the model, it can take more time to simulate than the simulation horizon, rendering 

it hard to use in real time, or at scale.  

 

While using physical models provide more explainable results, using neural networks is also a 

viable approach. Neural networks are a type of machine learning model inspired by the structure 

and function of the human brain. At their core, neural networks consist of layers of interconnected 

nodes (neurons) that process and transmit information. One of the key advantages of neural 

networks is their ability to learn from large amounts of data, uncovering underlying patterns and 

relationships that might be difficult or impossible for humans to discern on their own. Despite 

requiring more learning time, once trained, neural networks can operate at high speeds, making 

them suitable for real-time applications. Moreover, advancements in neural network architectures 

have led to the development of specialized models tailored for processing time series data [2]. In 

this study, we employ the Temporal Convolutional Neural Network (TCN) architecture [3], which 

has been shown to excel on key benchmarks since its introduction in 2018, surpassing established 

techniques such as LSTM (Long-Short-Term Memory) networks [4], previously considered 

industry standards. 

 

This paper aims to demonstrate the potential of neural networks for real-time estimation of bath 

temperature. For the context of this paper, the threshold of a reasonable model for bath 

temperature prediction was considered to be below 5 °C.  
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Finally, further work will be needed to access the ability of the model to generalize between a 

variety of cell designs and technologies.  
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